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Hyperspectral Band Selection by
Multitask Sparsity Pursuit
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Abstract—Hyperspectral images have been proved to be effec-
tive for a wide range of applications; however, the large volume
and redundant information also bring a lot of inconvenience at
the same time. To cope with this problem, hyperspectral band
selection is a pertinent technique, which takes advantage of re-
moving redundant components without compromising the original
contents from the raw image cubes. Because of its usefulness, hy-
perspectral band selection has been successfully applied to many
practical applications of hyperspectral remote sensing, such as
land cover map generation and color visualization. This paper fo-
cuses on groupwise band selection and proposes a new framework,
including the following contributions: 1) a smart yet intrinsic
descriptor for efficient band representation; 2) an evolutionary
strategy to handle the high computational burden associated with
groupwise-selection-based methods; and 3) a novel MTSP-based
criterion to evaluate the performance of each candidate band
combination. To verify the superiority of the proposed framework,
experiments have been conducted on both hyperspectral classi-
fication and color visualization. Experimental results on three
real-world hyperspectral images demonstrate that the proposed
framework can lead to a significant advancement in these two
applications compared with other competitors.

Index Terms—Band selection, compressive sensing (CS), hyper-
spectral image, immune clonal strategy (ICS), machine learning,
multitask learning (MTL).

I. INTRODUCTION

HYPERSPECTRAL images have attracted much attention
from both academia and industry over the past few years.

A hyperspectral image, or an image cube, can provide informa-
tion from a wide range of wavelengths with fine spectral res-
olution. This characteristic makes it beneficial to a wide range
of applications. For example, it has already been successfully
introduced in environmental monitoring [1], biological analysis
[2], medical imaging [3], production quality inspection [4], etc.

However, the increased volume of data contained in the
hyperspectral image also entails researchers the inconvenience
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and inefficiency in information storage, display, transmission,
and processing [5], [6]. Moreover, the hyperspectral infor-
mation in an image cube often contains a large amount of
redundancy and therefore has some undesirable statistical and
geometrical properties [7], [8]. These drawbacks are mainly
because that the hyperspectral image is commonly represented
by hundreds of bands, which are highly correlated among
neighboring bands. For some cases, increasing the spectral
bands can enhance the performance, but that does not mean that
all the bands take the role. The most critical factor might be only
several few bands. For this reason, it is desirable to develop a
feature selection technique that can automatically select only a
few decisive and physically meaningful bands to represent the
whole image cube without losing effectiveness. This technique
is also known as band selection, which has been an attractive
topic in hyperspectral remote sensing.

Hyperspectral band selection is often compared with another
kind of redundancy reduction technique—feature extraction
[9]. The latter is typically achieved by projecting the original
information to a lower dimensional feature space [10]–[13]. In
the field of hyperspectral image processing, band selection is
often preferable to feature extraction, since it takes advantage
of preserving the original information from the raw image cube
[14], [15]. Reliable selection results can not only facilitate the
storage, display, transmission, and processing but also guide
effective data acquisition. As for this work, we mainly focus
on the problems of hyperspectral classification and color visu-
alization in hyperspectral image processing.

Recently, many hyperspectral band selection methods have
been proposed to support efficient hyperspectral classification
[16], [17] and color visualization [18], [19]. However, the
performances of these methods are still far from satisfying.
Most of these methods rely on independent selection that tack-
les bands individually, ignoring the interdependencies among
them, whereas in practical applications, the selected bands will
work jointly. In addition, these methods also suffer from the
high computational burden due to lack of a compact band
descriptor, although the independent selection strategy is em-
ployed. Beneficial from recent advances in machine learning,
there are many techniques such as sparse learning [20]–[22],
subspace selection [23], [24], and feature mining [25], which
can provide some refreshing potentials to band selection and
improve it for a better performance. In this paper, we propose a
multitask sparsity pursuit (MTSP) framework for unsupervised
hyperspectral band selection, which contributes the following.

• Formulate the representative band selection as a multitask
sparse learning problem, where learning the representation
of each band is viewed as a single task. The associated
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joint sparsity constraint problem is optimized using an ac-
celerated proximal gradient (APG) method that achieves
the global solution with quadratic convergence [26], [27].
To the best of our knowledge, there is no other work
with regard to exploiting multitask learning (MTL) in
hyperspectral band selection.

• Design a compressive sensing (CS)-based descriptor for
efficient yet intrinsic hyperspectral band representation.
Although the raw information of a band could be directly
used as a description, this strategy often goes with unac-
ceptable computational burden due to the huge dimension-
ality. In this paper, we define a new hyperspectral band
descriptor by exploiting the sparse signal recovery power
of CS.

• Construct an efficient searching strategy for candidate
hyperspectral band combinations based on immune clonal
strategy (ICS). To choose the best bands from the large
volume, some conventional methods proposed to employ
the subset forward-searching strategies [6], [28]. These
strategies need to preliminarily determine one or several
bands for initialization and are suitable for independent
selection. However, this kind of strategies cannot be ap-
plied to our framework, which exploits interdependen-
cies among different tasks for MTSP. Fortunately, we
found that the powerful global searching ability of ICS
can provide us an ideal solution without the need of
examining perhaps billions of possible hyperspectral band
combinations.

The rest of this paper is organized as follows. Section II
reviews the works on the topic of hyperspectral band selection.
Section III describes each component of the proposed frame-
work in detail. Section IV presents the extensive experiments
to prove the superiority of the proposed framework, and the
conclusion follows in Section V.

II. RELATED WORK

With the problems caused by the raw hyperspectral images,
many efforts have been made in both theory and practice to
refine the redundant data for efficient and effective storage,
transmission, processing, etc. There are many selection criteria
that have been introduced. The most popular ones include linear
prediction, orthogonality, spectral angle, spectral correlation,
spectral derivation, mutual information, and Kullback–Leibler
divergence. Based on these criteria, two major types of strate-
gies, i.e., pointwise selection and groupwise selection, are used
to determine the effective band combination.

Pointwise-selection-based methods begin with an empty can-
didate set and then gradually augment it, or start with a full
candidate set and then sequentially remove unfitted bands, until
the desired size is reached. For example, Chang and Wang [29]
proposed to sequentially exclude correlated bands using a diver-
gence measure. Their method linearly constrains bands while
minimizing correlations or dependencies among them. Du and
Yang [30] initialized a pair of most distinctive bands through
orthogonal subspace projection and then sequentially added
bands most dissimilar to the determined ones, according to the
cost of linear prediction and orthogonal subspace construction.

In addition, Yang et al. [28] proposed a supervised method
based on class signature prior. In their work, a sequential
forward selection strategy is also employed based on the same
initialization procedure as [30], and the expected band set is the
one yielding the high classification accuracy.

On the other hand, in groupwise-selection-based methods,
the bands selected out are simultaneously determined. For
example, Martínez-Usó et al. [9] started from clustering bands
to minimize the intracluster variance while maximizing the in-
tercluster variance based on the measure of mutual information
and Kullback–Leibler divergence. Then, the most representa-
tive band combination is determined as the one constituted by
the bands with highest average correlations in the correspond-
ing clusters. Dissimilarly, Su et al. [31] proposed to group all
the bands by semisupervised k-means clustering with the use of
class signature prior. Then, they excluded the clusters with the
centroid bands dissimilar to others and selected the remaining
cluster centers as the final output. More recently, Yin et al. [32]
have introduced a computational evolutionary strategy into the
field of supervised band selection. In their work, the candidate
band combinations are evaluated through an affinity function
driven by hyperspectral classification accuracy.

In addition to the aforementioned methods being general
for a wide range of applications, there are also many task-
driven band selection methods dedicated only to hyperspectral
image visualization. These methods aim at providing the most
representative three bands of tristimulus display suitable for
human visual perception. For all these methods, the most basic
requirement is that the displayed false color image should keep
the discriminative ability of objects [19], [33]. Many signal
processing techniques have been introduced to this type of task-
driven band selection. For instance, Demir et al. [18] proposed
to utilize one-bit transform (1BT) to select three most suitable
spectral channels for RGB display. According to the trans-
formation results, they first determined some well-structured
bands as candidates and then further refined the candidate
set using correlation measure to obtain the most dissimilar
three bands. Moreover, information measure has been also
proved powerful for hyperspectral image visualization. In [19],
Moan et al. employed three different orders of information
measures to compare spectral channels to determine the most
important triple components. They first sought two most dis-
similar bands as the R and B channels and then selected the
one minimizing the third-order information measure among
this band and the previously identified two as the G channel.
Recently, supervised band selection method has been also in-
troduced in hyperspectral image visualization. In [34], the band
subset yielding the largest class separability is selected with
a forward-searching strategy and divided into three spectral
ranges. Then, the most uncorrelated three bands are further
selected and mapped into RGB color space.

III. PROPOSED FRAMEWORK

This section details the proposed MTSP-based framework for
unsupervised groupwise band selection. The overall flowchart
is summarized in Fig. 1. In this framework, the most crucial
component is the MTSP-based criterion for the evaluation of
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Fig. 1. Flowchart of the MTSP-based band selection framework.

each possible band combination. In addition, as it is found that
using raw band information for MTL is not computationally
acceptable in practice, a random-projection-based descriptor
is designed, which exploits the sparse signal recovery power
of CS to effectively represent each hyperspectral band before
MTL. Then, a computational evolutionary strategy is proposed
to efficiently search for the desired band combination from
perhaps billions of candidates. The following paragraphs will
individually describe all these functional aspects.

A. Compressive Hyperspectral Band Description

For the groupwise hyperspectral band selection, naively de-
scribing each band using the raw image information as descrip-
tor is computationally too expensive for an ordinary terminal
processor. This obstacle exists even for processing a medium-
sized image. Therefore, a smart yet intrinsic descriptor is of
prime importance for the success of hyperspectral image pro-
cessing. This issue has been attracting much attention in recent
years. Here, an effective and efficient descriptor is proposed to
represent hyperspectral bands in the compressed domain.

1) Sparse-Measurement-Matrix-Based Random Projection:
Based on CS theory [35], [36], a small number of randomly
generated linear measurements can preserve most of the salient
information encoded in the original high-dimensional signal,
if it is compressible. This technique provides an alternative to
Shannon–Nyquist sampling [37], [38]. The projections satisfy-
ing the restricted isometry property (RIP) [39] are proved to be
adequate to preserve the information when projecting the com-
pressible signals to a low-dimensional compressed subspace.
RIP characterizes matrices that can act as nearly orthonormal
bases, at least when operating on sparse vectors, and is proved
sufficient to guarantee perfect recovery [39]. Baraniuk et al.
[40] proved that the random measurement matrix satisfying the
Johnson–Lindenstrauss lemma1 can also satisfy the RIP in CS.
To be specific, for the projection

x = Ry (1)

the original high-dimensional data description y ∈ R
d can be

almost perfectly reconstructed from the low-dimensional de-
scription x ∈ R

k (k � d), if y is compressive and the ran-
dom measurement matrix R ∈ R

k×d satisfies the Johnson–

1The Johnson–Lindenstrauss lemma [41] states that the distances between
the points can be nearly preserved if they are embedded into a randomly
selected subspace with suitable dimensions.

Lindenstrauss lemma. In other words, this projection can ensure
that x preserves almost all the information in y.

Limited by the requirement of satisfying RIP, a typically
feasible measurement matrix is the random Gaussian matrix
R ∈ R

k×d with entries rij ∼ N(0, 1) [42], where the sub-
scripts indicate the positions of the entries in R. However, as
it is a dense matrix, the storage and computational costs are
still high when k is with a large value. In order to perform
a more practical information-preserving and dimensionality
reduction for hyperspectral band description, a very sparse
measurement matrix satisfying the RIP is employed in [43].
This measurement matrix facilitates efficient projection from
the original feature space to a low-dimensional compressed
subspace, which has the entries defined as

rij =

⎧⎨
⎩

√
s, with probability 1

2s
0, with probability 1− 1

s
−√

s, with probability 1
2s .

(2)

It is proved that this measurement matrix with s = O(d) (y ∈
R

d), even when s = d/ log(d), can support a random projection
with almost the same accuracy as the traditional scheme where
rij ∼ N(0, 1) [43]. As recommended in [42], this work sets
s = d/4 to construct a very sparse random matrix for reliable
projection.

2) Low-Dimensional Compressive Descriptor: In our band
selection framework, bands are described by low-dimensional
descriptors. These descriptors are extracted from the multiscale
integral image feature space based on the aforementioned ran-
dom projection. The overall flowchart of our feature extraction
scheme is summarized in Fig. 2. This scheme mainly consists
of three functional steps.

First, for each hyperspectral band, a dyadic Gaussian pyra-
mid with four spatial scales is created to exploit the multiscale
information in the band. This procedure is implemented by suc-
cessively low-pass filtering and subsampling the input image
and, finally, yields four octaves with horizontal and vertical
scale reduction factors ranging from 1 (scale zero) to 0.125
(scale three).

Second, four integral images are calculated for the generated
octaves. This treatment is found to take into account the global
relationships between pixels within the same octave in our
experiments. Then, each hyperspectral band can be represented
as a very high dimensional multiscale feature vector y ∈ R

d,
where d is directly the number of pixels in the dyadic Gaussian
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Fig. 2. Flowchart of the proposed compressive band description algorithm.

pyramid. Typically, d is on the order 104−106 for a hyperspec-
tral band.

Finally, as discussed in Section III-A1, a very sparse random
measurement matrix R with the setting s = d/4 is adopted.
This random matrix is then used to project the original hyper-
spectral band description y onto a compressive vector x ∈ R

k

in a low-dimensional feature space using (1). In this paper,k is
experimentally fixed to 200.

For a hyperspectral image cube, the random measurement
matrix needs to be constructed only once and kept fixed for
all the component bands. This matrix is very spare, and the
corresponding storage and computational cost is very light.
Factually, there are nonzero entries in R, except the zero ones,
and only the corresponding positions in the integral images
need assigning the storage and computational resources in prac-
tice. Furthermore, benefiting from the very low-dimensional
description x, our overall groupwise band selection framework
can be efficiently implemented within acceptable cost.

B. MTSP-Based Criterion

The proposed framework is based on groupwise selection
that tackles each possible band combination as a complete unit.
Before choosing the candidate band sets for consideration, the
evaluation criterion should be introduced first. Here, an MTSP-
based criterion is proposed to evaluate the appropriateness of an
examined band combination. The following will describe each
stage of this criterion in detail.

1) Multitask Representation of Hyperspectral Image: In
many practical situations, a learning problem can be tackled as
several related subtasks that share dependencies in some latent
factors. Hence, employing the MTL framework that jointly
solves these subtasks by utilizing their inherent relationships
will have more advantages than tackling each one indepen-
dently [44]. Recently, MTL has been successfully applied to
various applications, such as image tagging [45], image classifi-
cation [46], saliency detection [47], and object tracking [48]. In
this paper, we formulate the evaluation of a band combination
as an MTL problem, where the representation of each band in
the image cube is considered as a subtask.

With the high band correlation and data redundancy, a hyper-
spectral band is usually very similar to the neighboring bands.
In other words, a band in a hyperspectral image cube will be
well linearly reconstructed by some others in general. Some
traditional works have already taken into account this charac-
teristic to select the bands dissimilar to the others [31], [49].

In this paper, the same characteristic is exploited in another
way, which assumes that each band in the hyperspectral image
cube can be represented as a sparse linear combination of some
representative bands.

To be specific, in our MTSP-based criterion, a hyperspectral
image cube is denoted in matrix form as X = [x1,x2, . . . ,xn],
where each column in this matrix is a vectorial representation
in R

k of a band, whereas the desired band combination is
viewed as a dictionary and denoted by D = [d1,d2, . . . ,dm]
with desired band di. Each band xi can be represented as a
linear combination zi of the dictionary D, such that X = DZ.

Moreover, the high redundancy and correlation are known
to be contained between neighboring bands. This characteristic
culminates in the subtask of individual band representations
being jointly sparse. Specifically, in our case, band represen-
tations are encouraged to be individually sparse and share
dictionary bands that can reliably reconstruct them by joint
sparsity pursuit.

The most common strategy to impose joint sparsity in MTL
framework is to use mixed norm, such as �2,1 and �∞,1. These
two regularizers are traditionally the sparsity-inducing norms
to yield the sharing parameters among the individual subtasks.
An example of how the joint sparsity regularizer works is
presented in Fig. 3. In this paper, the convex �2,1 and �∞,1

regularizers are investigated to address the problem of MTL in
the representation of a hyperspectral image cube. In addition,
the conventional �1 norm that regularizes each representation
task independently will be also taken into account as a bench-
mark. Without losing generality, we introduce the notation �p,1,
p ∈ {1, 2,∞}, which is defined as ‖Z‖p,1 =

∑
i ‖Zi‖p, where

‖Zi‖p is the �p norm of Zi, the ith row of matrix Z. Based on
this definition, our MTL problem can be formulated as a convex
optimization problem in (3), where the parameter λ controls the
tradeoff between the sparsity of the solution and the fidelity of
the approximation to X, i.e.,

min
Z

‖X−DZ‖2F + λ‖Z‖p,1. (3)

2) APG Method: The method employed in this paper to
solve MTL is based on the APG approach [27]. This approach
has been successfully used to provide a fast convergence rate
solution for convex optimization problems with nonsmooth
terms. To be specific, the APG approach is originally developed
for the following minimization:

min f(Z) + g(Z) (4)
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Fig. 3. Illustration of how the joint sparsity regularizer works. The ith column of the sparse coefficient matrix constitutes a representation in R
m for xi. A joint

sparsity regularizer not only encourages each column vector to be sparse but also constrains coefficients in each row.

where f(Z) is a smooth convex function, and its gradient
is Lipschitz continue, whereas g(Z) is a continue function
but possibly nonsmooth. Compared with traditional projected
subgradient optimizers that achieve sublinear convergence, the
advantage of APG is justified by its quadratic convergence rate
O(1/t2) for global solution. Concretely, each APG iteration
involves two pivotal steps: a gradient mapping step, which up-
dates the representation matrix Z(t) with the fixed aggregation
matrix G(t), and an aggregation step, which linearly combines
Z(t+1) and Z(t) to construct G(t+1).

In the gradient mapping step, the algorithm will obtain
Z(t+1) by solving (5) with the currently estimated G(t), i.e.,

Z(t+1) = argmin
W

1

2
‖W −V‖2F + ηg(W) (5)

V =G(t) − η�f
(
G(t)

)
(6)

where the temporary V is set for the sake of simplicity, and η
is a small step parameter.

As for the aggregation step, the linear combination strategy
for updating the aggregation matrix usually varies according to
the specific requirements of applications. In the MTL frame-
work, the most commonly used strategy is as follows:

G(t+1) = Z(t+1) +
1− α(t)

α(t)
α(t+1)

(
Z(t+1) − Z(t)

)
(7)

where α(t+1) is congenitally calculated by α(t+1) = 2/(t+ 3).
3) Fast Numerical Method for Solving (3): In our case, the

APG method can be applied to (3) with{
f(Z) = ‖X−DZ‖2F (8)
g(Z) = λ‖Z‖p,1. (9)

Then, the expected representation matrix Z(t+1) will take the
following form:

Z(t+1) = argmin
W

1

2
‖W −V‖2F + ηλ‖W‖p,1 (10)

where V can be obtained by rewriting (6) as

V = G(t) − 2ηDT
(
DG(t) −X

)
. (11)

So far, the minimization problem (3) has been converted to
solving (10) in each APG iteration. However, directly finding
a solution from (10) is not yet a workable scheme. Here, we
suggest a look back of the �p,1 definition, which can help
decouple (10) into m disjoint subproblems. Each subproblem

corresponds to a row vector Zi and can be easily solved by
exploiting the structure of the �p ball with the complexity
depended on p. More specifically, all the disjoint subproblems
are formulated by the following equation:

Z
(t+1)
i = argmin

Wi

1

2
‖Wi −Vi‖22 + ηλ‖Wi‖p (12)

where Vi is the corresponding ith row of matrix V. Then, the
solutions of (12) for p ∈ {1, 2,∞} can be easily obtained by

Z
(t+1)
i =

⎧⎪⎪⎨
⎪⎪⎩

sign(Vi)max (0, ‖Vi‖1 − ηλ) , p = 1

max
(
0, 1− ηλ

‖Vi‖2

)
Vi, p = 2

max
(
0, 1− ηλ

‖Vi‖1

)
a, p = ∞

(13)

where aj=sign(Vij)min(‖Vi‖1, (
∑ĵ

r=1 ur − ηλ)/ĵ), j=1,

2, . . . , n. The temporary parameters ur and ĵ are obtained by
setting uj = |Vij | and sorting these values in decreasing order
(u1 ≥ u2 ≥ · · · ≥ un). Then, ĵ is calculated as ĵ = max{j :∑ĵ

r=1(ur − uj) < ηλ}.
Note that APG convergence in our case is achieved when

the relative change rate in the cost of (3) falls below a given
tolerance τ = 10−4 within a predefined step size h = 10. To be
specific, the following ratio is calculated in each iteration t:

φ = 1−
min

t≤i≤t+h
f
(
Z(i)

)
+ g

(
Z(i)

)
max

t≤i≤t+h
f
(
Z(i)

)
+ g

(
Z(i)

) . (14)

The procedure will stop when φ ≤ τ .
4) Criterion for Representativeness: As the final step, a

selection of original bands must be identified according to some
given evaluation criterion. In this paper, the finally preserved
bands are those as representative as possible based on the
aforementioned MTL result. In other words, the selected bands
are those yielding the minimum cost in (3).

This scheme is similar to one popular criterion—linear pre-
diction [31], [49]—which is originally used to evaluate the
distinctiveness of an examined band by jointly measuring the
similarity between this single band and other multiple bands.
The proposed criterion differs from traditional linear-prediction-
based methods mainly in two aspects: First, in our criterion,
there is joint sparsity constraint imposed on the coefficients of
linear combination. Second, the bands selected by our criterion
are no longer the ones with the maximum reconstruction error
using the linear combination of other selected bands.
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C. Computational Evolutionary Band Selection

For a groupwise hyperspectral band selection task, there are
perhaps billions of candidate band combinations to be ana-
lyzed. For efficient selection, some traditional methods choose
to employ the subset forward-searching strategies [6], [28].
However, these strategies are suitable only for independent
selection and cannot be applied to the situation that exploits
interdependencies among different tasks. Fortunately, for this
type of optimization problem, the computational evolutionary
strategies can now provide us an ideal solution. Among these
strategies, ICS is probably the one of greatest popularity due to
its excellent global searching ability. Therefore, in this paper,
ICS is also employed to solve the hyperspectral band selection
problem.

1) Affinity Function Based on the Proposed Criterion: The
ICS derives from the theory of clonal selection, which describes
the dynamic learning mechanisms of the biological immune
system counteractive to antigenic invasions [50]. In a typical
ICS, the antigens are generally regarded as the target problems
to be solved, whereas the antibody cells in the immune system
are imitated as the solutions. It is obvious that different anti-
body cells may eliminate the antigens with different powers.
This difference can help discriminate the effectiveness of an
antibody cell and is measured by the affinity function in the
computational system. The main process of ICS is to efficiently
search for the appropriate antibody with the best affinity for the
invaded antigen.

For the ultimate purpose, the finally preserved band combi-
nation is the one complying with the minimum reconstruction
criterion introduced in Section III-B4. Driven by this con-
sideration, in our ICS, the problem of hyperspectral image
representation is converted as the antigen, whereas each band
combination is regarded as an antibody cell. Then, the affin-
ity for an antibody can be easily obtained by the following
function:

A(D) = e−‖X−DZ‖2F−λ‖Z‖p,1 . (15)

For convenient interpretation of this function, a retrospect
of notation definition should be presented. As defined in
Section III-B1, X = [x1,x2, . . . ,xn] is the description for
a hyperspectral image with each column corresponding to a
band, D = [d1,d2, . . . ,dm] is an examined band combination
denoted with the same form as X, and Z is the sparse matrix
consisting of the reconstruction coefficients obtained by our
MTL framework. It should be noted that each D is a subset of X
and is actually specified by a binary vector in implementation,
indicating which column of X is selected. A larger value of
A(D) indicates a better band combination.

2) Immune Operator for Effective Band Selection: In the
biological immune system, when a new type of antigens has
invaded a system, the organism can perform immune clonal
multiplication to evolve the high-affinity antibody for defense.
This process mainly involves clone, mutation, and selection.
Correspondingly, in the ICS, the expected antibody cells are
also selected through these three immune operators. In this
paper, the possible band combinations are the antibody popu-
lations. A set of antibody population D = {D1,D2, . . . ,DN},

where N is heuristically set as 10, will undergo the state
transformation of ICS given as follows to select the highest
affinity case:

D(t)
TC
c−→ D

′(t)
TM
c−→ D

′′(t)
TS
c−→ D(t+ 1)

where TC
c , TM

c , and TS
c represent the clone, mutation, and

selection operators, respectively; and D
′(t), D′′(t), and D(t+1)

are the correspondingly evolved antibody populations.
The clone operator TC

c is, in fact, directly the self-copy of
the antibodies. During this process, the clone number NC(Di)
of each examined antibody is determined by its affinity for the
given antigen. In this paper, NC(Di) is given by

NC(Di) = Int

⎛
⎝N · A(Dj)

max
j∈[1,N ]

A(Dj)

⎞
⎠ (16)

where Int(·) is a rounding-up function.
The mutation operator TM

c aims at enriching the diversity
of the antibody population. The strategy used in this stage is
also related to the affinities of the antibodies. In this paper, we
randomly pick out NM (D′

i) elements in the copied antibody
D′(i) and then replace them with the equivalent numbers of
other available candidates. NM (D′

i) is a random number from
[1, NC(Di)], where NC(Di) is the clone number of the parent
antibody cell Di. In addition, a supplement process is set
within the mutation operator to avoid repeatedly constructing
antibodies with the identical elements.

The selection operator TS
c corresponds to a process of affin-

ity maturation. This operator can preserve the most appropriate
antibodies with the highest affinities as memory cells. In this
paper, the probability of a mutated antibody cell D′′

i replacing
its parent Di is calculated by the following equation:

p (Di ← D′′
i ) =

{
1, A (Di) < A(D′′

i )

e
−

A(Di)−A(D′′
i )

NC (Di) , A(Di) ≥ A (D′′
i ).

(17)

Then, the updated Di (i = 1, 2, . . . , N) will constitute D(t+1)
for the next iteration. The updating procedure stops when
the relative change rate in the highest affinity during the last
50 steps falls below a predefined tolerance 10−4.

IV. EXPERIMENTS

This section will verify the performance of the proposed
framework applied to both hyperspectral classification and
color visualization. The experimental results correspondingly
consist of two types of comparisons between our method
and other competitors. In each comparison, we will examine
whether the proposed framework can outperform the competi-
tors over different numbers of selected bands. The following
will start with the descriptions of the employed data sets and
competitors and then present the comparative results in detail.
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A. Data Sets

Three real-world hyperspectral image data, which are gath-
ered by two different remote imaging systems, are used for
experimental verifications.

1) Salinas Scene: This image was gathered by the 224-band
AVIRIS system in 1998 over Salinas Valley, California. The
data consist of 512 × 217 pixels with spectral coverage within
0.4–2.5 μm and are composed of vegetables, bare soils, and
vineyard fields with a spatial resolution of 3.7 m. Previous to
the practical analysis, 20 atmospheric and water bands, i.e.,
108–112 (1.37–1.41 μm), 154–167 (1.83–1.93 μm), and 224
(2.50 μm) were discarded due to the low signal-to-noise ratio.
In this paper, the employed Salinas Scene data are the ones with
well-labeled ground reference containing 16 classes.2

2) Pavia University Scene: Different from the preceding im-
age, the Pavia University data were acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) system, which
generates 115 bands ranging from 0.43–0.86 μm with a geo-
metric resolution of 1.3 m. The scene was acquired around the
Engineering School at the University of Pavia, northern Italy,
and consists of 610 × 340 pixels, each containing 103 bands
with 12 noninformational bands discarded. In this paper, the
employed Pavia University data are the one with groundtruth
land cover map containing nine classes.3

3) Indian Pines Scene: This image is also well-known
224-band AVIRIS data collected on June 12, 1992, over the
Indian Pines test scene, 6 mi west of West Lafayette. The
provided image file is a subset of a larger scene and consists
of 145 × 145 pixels with 220 corrected spectral reflectance
bands in the wavelength range of 0.4–2.5 μm.4 It now has been
widely used with only 206 bands by removing bands 150–163
(1.79–1.89 μm), which are known as covering the region of
atmospheric and water absorption.

B. Competitors

In our comparative experiments, the performance of the
proposed framework is verified at the occasions in both hy-
perspectral classification and color visualization. Two kinds of
band selection methods for each application are introduced as
competitors. With regard to selecting bands for hyperspectral
classification, the proposed method is compared with the fol-
lowing works having four specific implementations. Details of
these approaches are as follows.

1) Constrained Band Selection (CBS) [29]. This method
selects bands by imposing constrained band correlation
and dependence minimization and is implemented by two
different strategies. One is derived by the concept of the
constrained energy minimization (CEM). This strategy
converts a band image to a vector and linearly constrains a
desired band while minimizing interfering effects caused
by other bands. Since a band image is generally with a
large size, using CEM will be accompanied by the com-
putational problem. In order to cope with this dilemma, an

2http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes

3http://tlclab.unipv.it/sito_tlc/people.do?id=pgamba
4https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html

alternative approach that reinterprets CEM-CBS with lin-
early constrained minimum variance (LCMV) has been
also introduced in [29]. LCMV-CBS constrains a band
image as a matrix and imposes a constraint vector on
each of its column. In these two implementations, four
specific criteria are employed. They are band correlation
minimization (BCM), band correlation constraint (BCC),
band dependence minimization (BDM), and band depen-
dence constraint (BDC), respectively.

2) Clustering-Based Band Selection (CBBS) [9]. CBBS is
a hierarchical-clustering-based method using an agglom-
erative strategy to join similar bands together. In par-
ticular, the employed clustering algorithm is based on
Ward’s linkage, which has the property of guaranteeing
grouped partitions with minimum variance in their level
of similarity. As a result, CBBS can construct a family of
derived groups with minimized intracluster variance and
maximized intercluster variance. Then, the bands with the
highest average correlations in the corresponding clusters
are selected as the final output. In addition, there are
two different criteria used for measuring the degree of
similarity between two bands: mutual information and
Kullback–Leibler divergence. The corresponding two im-
plementations are notated as CBBS-MI and CBBS-KLD,
respectively.

In order to assess the performance of the proposed method
on the aspect of hyperspectral image visualization, there are
also two different band selection methods implemented as
benchmarks. Details of these two competitors are as follows.

1) 1BT-Based Visualization (1BTBV) [18]. This method
provides a low-complexity selection for the RGB color
display, which utilizes 1BT-based band representation.
The initially preserved bands are those with well structure
evaluated through the responses of a 1BT filter. Based on
this strategy, the finally determined three color compo-
nents are the ones most dissimilar to all the other well-
structured bands.

2) Information-Measure-Based Visualization (IMBV) [19].
Dissimilar to the traditional mutual-information-based
methods, IMBV employs three information measures of
different orders for band selection. This method first
excludes irrelevant bands by means of a center-surround
entropy comparison. Then, the refined spectrums are
segmented to three groups by adaptively thresholding the
CIE standard observer color matching function. Finally, a
triplet of bands from the segmented groups is determined
with maximum second- and third-order informative
contents.

C. Comparison for Hyperspectral Classification

Here, a supervised hyperspectral pixel classification process
is implemented as an application to evaluate the performance
of the proposed band selection method. To this end, four widely
used classifiers are employed to produce the comparison results.
They are classification and regression trees (CART), k-nearest
neighborhood (k-NN), naive Bayes, and support vector ma-
chine (SVM), respectively. All the produced classification results
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Fig. 4. Classification results of the Salinas scene. (a)–(d) Accuracy curves by CART, k-NN, naive Bayes, and SVM, respectively. (e) Average accuracy bars.

are analyzed by two different metrics: accuracy curve and av-
erage accuracy bar. The accuracy curve is sketched by varying
the selected band number m, where m ranges from 5 to 100
with interval 5, and the average accuracy bar is plotted by aver-
aging the classification accuracy rates over all the employed m.

The comparative results for the Salinas scene are illustrated
in Fig. 4, where Fig. 4(a)–(e) presents the accuracy curves
produced by CART, k-NN, naive Bayes, SVM, and the average
accuracy bars, respectively. As observed from Fig. 4(a)–(d), the

performances of the proposed MTSP methods clearly dominate
the competitors on all the employed classifiers. Among the
MTSP methods, MTSP-�2,1 and MTSP-�∞,1 have nearly equiv-
alent performance, while significantly outperforming MTSP-�1.
Moreover, as a more general comparison, in Fig. 4(e), the av-
erage accuracy bars of MTSP-�∞,1, MTSP-�2,1, and MTSP-�1
are with top three positions at the rank of classification perfor-
mance, which further prove the effectiveness of the proposed
framework.
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Fig. 5. Classification results of the Pavia University scene. (a)–(d) Accuracy curves by CART,k-NN, naive Bayes, and SVM, respectively. (e) Average accuracy bars.

With regard to the Pavia University scene, the compari-
son results are shown in Fig. 5 with the same form as in
Fig. 4. For this hyperspectral image, as presented in Fig. 5(a)
and (c), the proposed MTSP methods have significant ad-
vantages when adopting CART and naive Bayes classifiers.
However, as shown in Fig. 5(b) and (d), if k-NN or SVM is
employed, the accuracy curves can no longer provide clues
discriminative enough to support comparative analysis. In such

a case, the average accuracy bar will be the more impor-
tant indicator. The corresponding results are demonstrated
in Fig. 5(e). It is manifested that the proposed MTSP-�∞,1

and MTSP-�2,1 clearly dominate all the other methods, and
the former is more preferable in most cases. In addition,
MTSP-�1 can also slightly outperform the existing methods,
except the equivalent performance when the SVM classifier
is utilized.



640 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 2, FEBRUARY 2015

Fig. 6. Classification results of the Indian Pines scene. (a)–(d) Accuracy curves by CART, k-NN, naive Bayes, and SVM, respectively. (e) Average accuracy bars.

For the Indian Pines scene, the comparison results are very
similar to those of the Salinas scene. As shown in Fig. 6(a)–(d),
the proposed MTSP methods can outperform on all the con-
ducted classification cases compared with the competitors.
Therefore, in Fig. 6(e), the MTSP methods achieve significant
superiorities in the average accuracy bars. In addition, it is
observed that MTSP-�∞,1 clearly outperforms MTSP-�1 and is
slightly better than MTSP-�2,1.

Additionally, a series of statistical tests are also conducted
for the classification results. These tests can show whether the
classification accuracies of the proposed MTSP methods are
better than those of the competitor with statistical significance.
Since the distributions of the classification accuracies may be
independent and not normal most of the time, the Student’s
t-test is employed here. The superiorities of the proposed
MTSP methods are verified on the 0.05 significance level. If
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TABLE I
STATISTICAL SIGNIFICANCE OF THE MTSP METHODS RELATIVE TO THE COMPETITORS OVER THE EMPLOYED HYPERSPECTRAL IMAGES

a significance value is less than 0.05, the null hypothesis stating
that the performance of our method is not preferable can be
rejected. The test results are presented in Table I, which pro-
vides each cell a significance value. These results prove that the
performances of the proposed MTSP methods are significantly
better than those of the competitors.

From the results, one can observe that the proposed MTSP
methods with �∞,1 and �2,1 regularizers are much effective than
the compared methods. From this result, the following can be
inferred: 1) the proposed MTSP-based criterion can be more
distinguishable than others; 2) the proposed compressive hy-
perspectral band descriptor can provide each band an intrinsic
description; and 3) the employed computational evolutionary
strategy is powerful enough to help provide an ideal solution in
our band selection framework. Therefore, the proposed MTSP-
based framework has the ability to select the truly valuable
bands in a greater probability for further processing.

D. Comparison for Hyperspectral Image Visualization

In the conducted hyperspectral image visualization experi-
ments, four performance evaluation criteria, namely, interclass
perceptual distance (ICPD) [19], [33], image entropy (IE) [51],
averaged gradient (AG) [51], and averaged color component
correlation (ACCC), are employed for the quantitative vali-
dation. In order to calculate ICPD, each produced false color
image is first associated with the corresponding groundtruth
land cover map. The following calculation is then divided into
three steps. Fist, for each land cover class, all the contained
false colors are directly averaged as the centroid color. Next,
each centroid color will be projected into a perceptual uniform
color space, which is CIELAB color space in our experiments.
In the end, the Euclidean distances calculated from the couples
of centroid colors are averaged as the final ICPD value. The
entropy of the produced false image is also an important
measure in the literature [51], which indicates the amount of
information contained in the image. IE could provide a valuable
clue for the assessment of visualization performance, but it
will fail in the case of noise images. To this end, the criterion
AG is recommended, which describes the image sharpness in
terms of an average over the horizontal and vertical gradient
values of the image. In addition, as the natural color images
are typically with high correlation between RGB components,
the correlation coefficients between RGB components can be
also used as a measure for the hyperspectral image visualization
methods [18], [52]. For the sake of simplicity, in this paper,
the averaged correlation over the pairs of RGB components
is calculated as an integrated metric for each visualization
result. Larger ICPD, IE, AG, and ACCC values indicate better
performances.

Fig. 7. Hyperspectral image visualization results. From top to bottom, each
row corresponds to the Salinas, Pavia University, and Indian Pines scenes,
respectively. From left to right, each column presents the false images produced
by 1BTBV, IMBV, MTSP-�1, MTSP-�2,1, and MTSP-�∞,1, respectively. The
marked numbers are the indices of selected bands.

The comparison results are presented in Fig. 7 and Table II,
where the former illustrates the visual comparisons, and the
latter provides the ICPD, IE, AG, and ACCC values. These
results show that, for all the processed hyperspectral images, the
proposed MTSP methods strongly dominate the others. MTSP-
�∞,1, MTSP-�2,1, and MTSP-�1 can yield false images with
more colorful and discriminative appearances and, of course,
with significantly higher ICPD, IE, AG and ACCC values.

Additionally, it is interesting that, for both the Indian Pines
and Pavia University scenes, the false color images produced
by the proposed three MTSP methods are displayed with quite
similar appearances. This status is due to the fact that the
selected band combinations of these methods are extracted
from the neighboring wavelength. However, these band com-
binations have not conveyed the identical information and
therefore yielded different ICPD, IE, AG, and ACCC values.
To sum up, among the proposed MTSP methods, employing
�∞,1 regularizer will help select three bands most preferable for
hyperspectral image visualization, and then, �2,1 and �1 follow
closely behind, compared with other competitors.
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT HYPERSPECTRAL IMAGE VISUALIZATION METHODS

TABLE III
COMPARISON OF COMPUTATIONAL TIME (s)

FOR THE SELECTION OF TEN BANDS

TABLE IV
COMPARISON OF COMPUTATIONAL TIME (s) FOR

HYPERSPECTRAL IMAGE VISUALIZATION

E. Comparison of Computational Time

In order to evaluate the efficiency of the implemented band
selection methods, the computational time of each method are
compared. Timings have been taken on an Intel Core i3-550
3.2-GHz central processing unit with 2-GB random access
memory. Table III compares the computational time for the
selection of ten bands during the classification experiments,
and Table IV compares the time cost for each hyperspectral
image visualization method. The employed CBBS-MI and
CBBS-KLD are implemented in C++, whereas the others are
implemented in MATLAB. As a result, in both the two different
comparison groups, the proposed MTSP methods take compu-
tational times moderately among the competitive algorithms.
Although our methods cannot outperform all the competitors
in this aspect, they are computationally acceptable while guar-
anteeing the superior band selection results. In addition, an
enhanced hardware configuration could further improve our
methods to a faster speed, which might be adequate for real
situations. Therefore, from an overall perspective, the pro-
posed MTSP methods can claim their value in the practical
applications.

F. Verification for the Compressive Descriptor

In practice, performing random projection has to preserve
the neighborhood structure of the original descriptions. In order
to verify whether the proposed compressive descriptor satisfies

Fig. 8. Statistical comparison of the rank correlations for different dimen-
sional compressive descriptors. The asterisks denote the mean values, and the
distances above and below the asterisks reflect the standard deviations.

this requirement, the Kendall’s rank correlation analysis [53]
is employed. This analysis starts with the construction of two
types of nearest neighbor ranks for each band. One rank is
determined according to the similarities based on the raw image
information, and the other one is constructed using the com-
pressed descriptions. Then, for each pair of nearest neighbor
ranks, a Kendall’s rank correlation coefficient is calculated
to reflect their consistency. Larger correlation indicates better
compressed description. The analysis results are illustrated in
Fig. 8, which plots the statistics of the Kendall’s rank correla-
tions versus the dimensionality of the compressive descriptor.
It is manifested that the compressive descriptor can provide
the nearly perfect preservation for the neighborhood structures
when the dimensionality reaches 200. Therefore, in this paper,
k is fixed to 200 in all our comparison experiments.

V. CONCLUSION

The large and growing volume of redundancy carried by
hyperspectral image has caused increasing attention in both
academia and industry. With regard to this issue, the traditional
feature-extraction-based methods fail due to the weakness in
preserving the physical characteristics of the original spectral
channels. Differently, the problem addressed in this paper is
the selection of most representative bands to preserve the
original information of the data. This technique can reduce the
redundancy of hyperspectral image without compromising and
distorting the raw information in the selected bands.

The groupwise band selection framework proposed in this
paper is fully unsupervised and computationally acceptable,
which is based on the following functional components: 1) an
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MTSP-based criterion for evaluating the representativeness of
each band combination; 2) a compressive descriptor for effi-
ciently and effectively describing the hyperspectral bands; and
3) a computational evolutionary strategy for quickly and reli-
ably searching for the desired band combination from numerous
possible solutions.

Experiments have been conducted on both hyperspectral
classification and color visualization, which prove that, in these
two applications, the proposed framework is more robust and
reliable than the other competitors representing state of the art.
Particularly, when the joint sparsity constraint is imposed into
the proposed framework, i.e., when �∞,1 or �2,1 is regularized,
the performance is dominant at all the employed indicators in
most cases. This result means that the proposed framework
with joint sparsity constraint can select the representative bands
more critical and appropriate for the validated applications.
Compared with traditional pointwise-selection-based methods,
the main drawback of the proposed framework is the computa-
tional time required by the global searching process, which may
reach several tens of seconds. In the future, we will develop
computationally more efficient implementations by resorting to
parallel computer architectures.
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